Solar Professor

Solar Professor. info

NABCEP – What you need to know

Understanding STC

Learning Objectives

- A basic understanding of what Standard Test Conditions means
- What it is used for
- How it compares to other test conditions

Standard Test Conditions:

1000 W/m2, AM 1.5, 25°C

- ➤ 1000 W/m2 [Irradiance power / unit area]
- ➤ AM 1.5 [thickness or density of air that sun's rays travel through modules are rarely flat (35°N lat.)]
- ≥25 degrees C (77 degrees F) [cell temp]
- Used to compare the performance characteristics of one mfg module to another

Solar Professor

STC

Various test
conditions can be
used to evaluate
module performance
and may produce
different results.

Solar Professor

STC

- Standard Operating Conditions (SOC)
 - ➤ Irradiance: 1,000 W/m²
 - ➤ Cell temperature: NOCT
- Nominal Operating Conditions (NOC)
 - ➤ Irradiance: 800 W/m²
 - ➤ Cell temperature: NOCT
- Nominal Operating Cell Temperature (NOCT)
 - > Irradiance: 800 W/m²
 - ➤ Ambient Temp: 20°C
 - > PV Array: open-circuit
 - ➤ Wind Speed: 1.0 m/s
- PVUSA Test Conditions (PTC):
 - > 1000 W/m², 45°C, 1 m/s

SAMPLE NABCEP TYPE QUESTION

Q: A reference meter is measuring 600 W/m2 and the module output is 200W. What would the expected output be at STC?

A: If STC is 1000 W/m2 then at 600 W/m2 the module is only producing 60% of it's nameplate power (600 / 1000 = .60), therefore it is losing 40%. The equation would be:

200W / .60 = 333W

Thank You

Solar Professor. info