PV Study Items of Importance

What you should know:

- 1. environmental conditions that could reduce array performance: (clouds, rain, fog, snow, adjacent trees, etc.)
- 2. site specific conditions that could reduce performance (adjacent to farm fields, dirt roads, an airport, industrial zone, construction site, dusty area, bird droppings on the array, etc.)
- 3. reflective conditions that could increase performance
 - cloud enhancement, snow/ ice reflection, nearby high rise with mirror class which intensifies sun light.
- 4. array design must take into account external loads
 - wind loads
 - rain
 - snow
 - seismic
- 5. calculating percentage of use/ output/ etc. (basic math problems)
- 6. What is GFI? And where is it located in the system? What does it protect?
- 7. Why is a GFI fuse only 1 amp in most cases?
- 8. Lightning arrestor handle what type of surge
 - a. Voltage b. Amperage c. Watts d. Resistance
- 9. Charge controller function?
- 10. When are charge controllers required?
- 11. Where are charge controllers used?
- 12. Transformers: types, functions/ purposes of
- 13. Where are transformers found in PV systems?
- 14. What is MPP?
- 15 MPPT?
- 16. Can you read a sun chart? (better practice now!) A pathfinder chart?

- 17. If one cells output under full sun is 1.34 volts, what would 36 cells wired in series in a module produce? (consider no derations)
- 18. Know definitions (and/or uses) of the following

Inverter

Combiner box

Junction box

DC disconnect

AC disconnect

Performance meter

Net-meter

Grounding electrode

Over current protection

Charge controller

Shunt

Rectifier

- 19. The consideration of temperature in regards to over current protection
- 20. IN a PV systems, Heat effects what the most? Volts or Amps?
- 21. Difference between equipment and system grounding
- 22. Ground conductor in a standard PV system (not Sun Power)
- 23. Color code
- 24. What is article 690?
- 25. Safety concerns. Ladder, lifting and carrying, power tools, etc.
- 26. Safety harnesses required when?
- 27. Considerations of multi zone systems (modules on different roof faces, orientations/ tilts.)
- 28. Advantages of different types of mounting options?
- 29. Ground mount advantages and disadvantages

- 30. Are manufactures specifications important? Why?
- 31. types of approved roof sealant for penetrations
- 32. How is the inverter matched to the array? (parameters/ considerations)
- 33. Know these terms and concepts

Current

Power

Conductors

Insulators

Semiconductors

Ohms

Series circuit

Parallel circuits

Source circuit

Load circuit

Electromotive force

STC

PTC

PVUSA

AHJ

BOS

kWh

MW

Watt hours

Irradiance - measure of what?

Irradiation

Insolation

PV-Watts

NREL

DOE

USE-2

PV Wire

THHN

THWN

AWG

Maximum power point

Battery bank

Solar Path Finder

Sol Metric Suneye

Solstice - summer/ winter

Equinox - spring/fall

Azimuth

Altitude

Elevation

Zenith angle

Fixed tilt, adjustable tile, horizontal and dual axis trackers - advantages or each

Hard shadows

Diffuse shading

Deration

Derate factors

Solar constant

Peak sun hours

Watts per square meter

Efficiency of an inverter, various modules, and BOS components

Features of a modern inverter

- MPPT
- anti islanding
- power conditioning unit
- converts DC to AC
- remote monitoring
- performance metering
- GFI

Integrated inverters have disconnects & combiners built in

- > Row spacing (flat roof shading issues)
- > Battery based system terminology and equipment
 - be prepared to break down a question on a stand alone system
- > Types of installations
- > Types of PV
- > Photovoltaic Effect